Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetra- μ -acetato- $\kappa^8 O:O'$ -bis[(2-amino-3,5-dichloropyridine- κN^1)copper(II)]-(Cu—Cu)

Hui-Chang Chang, Jacqueline M. Cole,*‡Tze-Chia Lin and Paul G. Waddell‡

Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, England

Correspondence e-mail: jmc61@cam.ac.uk

Received 22 February 2011; accepted 26 April 2011

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.077; data-to-parameter ratio = 18.2.

The title binuclear Cu(II) complex, $[Cu_2(CH_3CO_2)_4 (C_5H_4Cl_2N_2)_2]$, is disposed about a crystallographic inversion center, located at the mid-point of the Cu—Cu connecting line. The Cu···Cu distance is 2.6600 (6) Å and each metal atom exhibits a Jahn–Teller-distorted octahedral geometry.

Related literature

For the structures of polymorphic tetrakis(μ -acetato-O:O')bis[(pyridine-N)copper(II)], see: Barclay & Kennard (1961); Hanic *et al.* (1964); Uekusa *et al.* (1989).

Experimental

Crystal data

 $\begin{bmatrix} Cu_2(C_2H_3O_2)_4(C_3H_4Cl_2N_2)_2 \end{bmatrix}$ $M_r = 689.26$ Monoclinic, $P2_1/c$ a = 8.2857 (17) Å b = 17.010 (3) Å c = 9.3159 (19) Å $\beta = 103.07$ (3)°

Data collection

Rigaku Saturn724+ diffractometer Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.407, T_{max} = 0.696$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.077$ S = 1.103028 reflections $V = 1279.0 \text{ (4) } \text{\AA}^{3}$ Z = 2Mo K\alpha radiation $\mu = 2.13 \text{ mm}^{-1}$ T = 150 K $0.44 \times 0.37 \times 0.17 \text{ mm}$

18645 measured reflections 3028 independent reflections 2996 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$

166 parameters H-atom parameters constrained
$$\begin{split} &\Delta \rho_{max} = 0.51 \text{ e } \text{\AA}^{-3} \\ &\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3} \end{split}$$

Data collection: *CrystalClear* (Rigaku/MSC, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

JMC thanks the Royal Society for a University Research Fellowship, the Taiwanese Ministry of Education for a partially funded PhD studentship (for TCL), the University of New Brunswick for the UNB Vice-Chancellor's Research Chair (JMC), and NSERC Discovery Grant 355708 (for PGW).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2343).

References

- Barclay, G. A. & Kennard, C. H. L. (1961). J. Chem. Soc. pp. 5244-5251.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hanic, F., Štempelová, D. & Hanicová, K. (1964). Acta Cryst. 17, 633-639.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Uekusa, H., Ohba, S., Saito, Y., Kato, M., Tokii, T. & Muto, Y. (1989). Acta Cryst. C45, 377–380.

[‡] Other affiliation: Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada E3B 5A3.

supplementary materials

Acta Cryst. (2011). E67, m691 [doi:10.1107/S1600536811015662]

Tetra- μ -acetato- $\kappa^{8}O:O'$ -bis[(2-amino-3,5-dichloropyridine- κN^{1})copper(II)](Cu-Cu)

H.-C. Chang, J. M. Cole, T.-C. Lin and P. G. Waddell

Comment

The title compound is binuclear and disposed about a crystallographic centre of symmetry with a Cu—Cu distance of 2.6600 (8) Å. It has a similar geometry to that observed in the two known polymorphs of monopyridinecopper(II) acetate (Barclay & Kennard, 1961; Hanic *et al.*, 1964; Uekusa *et al.*, 1989). However, the Cu—N bond distance in the title compound is *ca*. 0.05 Å longer than that observed in the orthorhombic polymorph and *ca*. 0.08 Å longer than that in the monoclinic polymorph.

Experimental

A suspension of (3,5-dichloro-2-pyridylimino)-*o*-cresol copper (II) (1 mg, 0.0016 mmol) in ethanol (*ca*. 3 ml) was heated to *ca*. 323 K until fully dissolved. The solution was then allowed to cool to room temperature. Crystals suitable for single-crystal X-ray crystallography were grown *via* slow evaporation of methanol over seven days.

Refinement

All H atoms were placed in idealized positions and refined as riding to their parent atoms, with bond lengths fixed to C—H = 0.93 (aromatic CH), 0.96 (methyl CH₃) or 0.86 Å (amine NH₂). Isotropic displacement parameters were calculated as $U_{iso}(H) = 1.5 U_{eq}(\text{carrier atom})$ for methyl groups and $U_{iso}(H) = 1.2 U_{eq}(\text{carrier atom})$ otherwise.

Figures

Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level; hydrogen atoms omitted for clarity. Atoms labeled with flag A are generated by symmetry 1-x, 1-y, 1-z.

Tetra- μ -acetato- $\kappa^{8}O:O'$ -bis[(2-amino-3,5-dichloropyridine- κN^{1})copper(II)](Cu—Cu)

Crystal data $[Cu_2(C_2H_3O_2)_4(C_5H_4Cl_2N_2)_2]$ $M_r = 689.26$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.2857 (17) Å b = 17.010 (3) Å

F(000) = 692 $D_x = 1.79 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6896 reflections $\theta = 4.8-36.7^{\circ}$ $\mu = 2.13 \text{ mm}^{-1}$

supplementary materials

c = 9.3159 (19) Å
$\beta = 103.07 (3)^{\circ}$
V = 1279.0 (4) Å ³
Z = 2

Data collection

T = 150 KPrism, blue $0.44 \times 0.37 \times 0.17 \text{ mm}$

Rigaku Saturn724+ diffractometer	3028 independent reflections
Radiation source: fine-focus sealed tube	2996 reflections with $I > 2\sigma(I)$
graphite	$R_{\text{int}} = 0.032$
Detector resolution: 28.5714 pixels mm ⁻¹	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 4.8^{\circ}$
ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)	$k = -22 \rightarrow 20$
$T_{\min} = 0.407, \ T_{\max} = 0.696$	$l = -12 \rightarrow 12$
18645 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.029$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.077$	H-atom parameters constrained
<i>S</i> = 1.10	$w = 1/[\sigma^2(F_o^2) + (0.0389P)^2 + 0.9376P]$ where $P = (F_o^2 + 2F_c^2)/3$
3028 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
166 parameters	$\Delta \rho_{max} = 0.51 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.35 \text{ e } \text{\AA}^{-3}$
0 constraints	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.42778 (2)	0.430189 (12)	0.47068 (2)	0.01965 (8)
Cl1	0.39574 (7)	0.08106 (3)	0.48552 (6)	0.03401 (12)
C12	-0.03256 (6)	0.24404 (3)	0.07032 (6)	0.03440 (12)
N2	0.5053 (2)	0.24052 (10)	0.5958 (2)	0.0307 (4)
H10	0.5454	0.2843	0.6342	0.037*
H8	0.5429	0.1967	0.6361	0.037*
01	0.26762 (16)	0.47238 (8)	0.57766 (15)	0.0273 (3)
N1	0.32520 (17)	0.30954 (9)	0.40958 (17)	0.0219 (3)
O3	0.60795 (16)	0.41098 (8)	0.36793 (17)	0.0288 (3)
C7	0.1925 (2)	0.16842 (10)	0.2815 (2)	0.0247 (3)
H7	0.1496	0.1214	0.2379	0.03*
C3	0.3140 (2)	0.55353 (11)	0.26647 (19)	0.0232 (3)

C1	0.2771 (2)	0.54062 (11)	0.63179 (19)	0.0225 (3)
C8	0.1324 (2)	0.24062 (11)	0.2229 (2)	0.0235 (3)
C9	0.2019 (2)	0.30880 (10)	0.2871 (2)	0.0234 (3)
Н9	0.1624	0.3565	0.2445	0.028*
C5	0.3835 (2)	0.24049 (10)	0.4722 (2)	0.0226 (3)
O4	0.57808 (18)	0.40136 (8)	0.65883 (16)	0.0313 (3)
C6	0.3169 (2)	0.16920 (10)	0.4057 (2)	0.0234 (3)
C4	0.1985 (3)	0.58896 (14)	0.1340 (2)	0.0343 (4)
Н5	0.2616	0.6087	0.0672	0.052*
H6	0.1377	0.6313	0.165	0.052*
H4	0.1226	0.5495	0.0855	0.052*
O2	0.29538 (16)	0.48257 (8)	0.29448 (14)	0.0268 (3)
C2	0.1372 (2)	0.56626 (12)	0.7009 (2)	0.0311 (4)
H2	0.1617	0.6172	0.7448	0.047*
H1	0.1249	0.5291	0.7752	0.047*
H3	0.0361	0.5688	0.6264	0.047*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.02168 (12)	0.01600 (12)	0.02151 (13)	0.00133 (6)	0.00540 (8)	0.00034 (7)
Cl1	0.0456 (3)	0.0184 (2)	0.0364 (3)	0.00489 (17)	0.0057 (2)	0.00646 (17)
C12	0.0360 (2)	0.0319 (3)	0.0301 (2)	0.00245 (18)	-0.00326 (19)	-0.00169 (18)
N2	0.0313 (8)	0.0209 (8)	0.0354 (9)	0.0017 (6)	-0.0016 (7)	0.0037 (6)
01	0.0303 (6)	0.0243 (6)	0.0310 (7)	-0.0009 (5)	0.0144 (5)	-0.0015 (5)
N1	0.0219 (6)	0.0182 (7)	0.0267 (7)	0.0017 (5)	0.0077 (5)	0.0000 (6)
03	0.0269 (6)	0.0249 (6)	0.0377 (7)	0.0009 (5)	0.0139 (5)	-0.0034 (6)
C7	0.0291 (8)	0.0191 (8)	0.0276 (9)	-0.0010 (6)	0.0101 (7)	-0.0033 (7)
C3	0.0244 (8)	0.0254 (8)	0.0203 (8)	0.0064 (6)	0.0059 (6)	0.0020 (6)
C1	0.0238 (8)	0.0237 (8)	0.0206 (7)	0.0049 (6)	0.0063 (6)	0.0043 (6)
C8	0.0236 (8)	0.0238 (8)	0.0234 (8)	0.0025 (6)	0.0060 (6)	0.0001 (6)
С9	0.0233 (7)	0.0203 (8)	0.0277 (8)	0.0034 (6)	0.0084 (6)	0.0016 (7)
C5	0.0226 (7)	0.0202 (8)	0.0267 (9)	0.0023 (6)	0.0091 (6)	0.0012 (6)
O4	0.0382 (7)	0.0223 (7)	0.0289 (7)	0.0014 (5)	-0.0019 (5)	0.0038 (5)
C6	0.0285 (8)	0.0156 (7)	0.0283 (9)	0.0039 (6)	0.0112 (7)	0.0037 (6)
C4	0.0334 (10)	0.0389 (11)	0.0278 (9)	0.0106 (8)	0.0009 (7)	0.0072 (8)
O2	0.0295 (6)	0.0239 (6)	0.0250 (6)	0.0007 (5)	0.0023 (5)	0.0022 (5)
C2	0.0301 (9)	0.0328 (10)	0.0346 (10)	0.0050 (7)	0.0159 (8)	-0.0004 (8)

Geometric parameters (Å, °)

Cu1—O1	1.9665 (14)	С7—Н7	0.93
Cu1—O4	1.9688 (15)	C3—O2	1.252 (2)
Cu1—O2	1.9691 (14)	C3—O4 ⁱ	1.262 (2)
Cu1—O3	1.9743 (14)	C3—C4	1.505 (2)
Cu1—N1	2.2449 (15)	C1—O3 ⁱ	1.259 (2)
Cu1—Cu1 ⁱ	2.6600 (6)	C1—C2	1.511 (2)
Cl1—C6	1.7342 (18)	C8—C9	1.371 (3)

supplementary materials

Cl2—C8	1.735 (2)	С9—Н9	0.93
N2—C5	1.349 (2)	C5—C6	1.416 (3)
N2—H10	0.86	O4—C3 ⁱ	1.262 (2)
N2—H8	0.86	С4—Н5	0.96
O1—C1	1.261 (2)	С4—Н6	0.96
N1—C9	1.348 (2)	C4—H4	0.96
N1—C5	1.351 (2)	С2—Н2	0.96
O3—C1 ⁱ	1.259 (2)	C2—H1	0.96
C7—C6	1.365 (3)	С2—Н3	0.96
С7—С8	1.390 (2)		
01—Cu1—O4	90.18 (6)	O3 ⁱ —C1—O1	125.55 (16)
O1—Cu1—O2	86.83 (6)	O3 ⁱ —C1—C2	117.59 (17)
O4—Cu1—O2	167.37 (6)	O1—C1—C2	116.85 (16)
O1—Cu1—O3	167.68 (6)	C9—C8—C7	119.85 (17)
O4—Cu1—O3	89.71 (7)	C9—C8—Cl2	120.30 (14)
O2—Cu1—O3	90.60 (6)	C7—C8—Cl2	119.83 (14)
O1—Cu1—N1	101.65 (6)	N1—C9—C8	122.72 (16)
O4—Cu1—N1	97.18 (6)	N1—C9—H9	118.6
O2—Cu1—N1	95.43 (6)	С8—С9—Н9	118.6
O3—Cu1—N1	90.58 (6)	N2	119.58 (16)
O1—Cu1—Cu1 ⁱ	83.91 (4)	N2—C5—C6	121.08 (16)
O4—Cu1—Cu1 ⁱ	82.81 (5)	N1—C5—C6	119.34 (16)
O2—Cu1—Cu1 ⁱ	84.67 (4)	C3 ⁱ —O4—Cu1	124.50 (12)
O3—Cu1—Cu1 ⁱ	83.85 (4)	C7—C6—C5	121.61 (16)
N1—Cu1—Cu1 ⁱ	174.44 (4)	C7—C6—Cl1	119.62 (14)
C5—N2—H10	120	C5—C6—Cl1	118.77 (14)
C5—N2—H8	120	C3—C4—H5	109.5
H10—N2—H8	120	С3—С4—Н6	109.5
C1—O1—Cu1	123.41 (12)	Н5—С4—Н6	109.5
C9—N1—C5	119.05 (15)	C3—C4—H4	109.5
C9—N1—Cu1	113.20 (11)	H5—C4—H4	109.5
C5—N1—Cu1	127.40 (12)	H6—C4—H4	109.5
C1 ⁱ —O3—Cu1	123.07 (12)	C3—O2—Cu1	122.58 (12)
C6—C7—C8	117.37 (16)	C1—C2—H2	109.5
С6—С7—Н7	121.3	C1—C2—H1	109.5
С8—С7—Н7	121.3	H2—C2—H1	109.5
O2—C3—O4 ⁱ	125.23 (16)	С1—С2—Н3	109.5
O2—C3—C4	118.13 (17)	H2—C2—H3	109.5
O4 ⁱ —C3—C4	116.64 (17)	H1—C2—H3	109.5

Symmetry codes: (i) -x+1, -y+1, -z+1.

